-
Example: Cassini propulsion system

CLa=ine

Helium tank

Oxidizer tank Fuel tank
Pressure; = nominal < Pressure,= nominal

Flow; = zero % ! Flow, = positive

X EX

[O

KAcceI eration = zero

/

Nayak CS 329A, Handout #13

-
Model-based diagnosis system

A diagnosis system isatriple (SD, COMPS, OBS
o 3D isasystemdescription

— expressed as a set of constraints, propositional clauses,
first-order formulae ...

« COMPSIsfinite set of components
— acomponent ¢ can be failed, AB(c), or normal, -AB(c)

— 3D gpecifies the consequences of a component being
normal or failed

e OBSisaset of observations

— expressed as variable values, propositional clauses, first-
order formulae...

/

Nayak CS 329A, Handout #13

4 N
Consistency-based diagnosis

Given a set of components A subset of COMPS, acandidate is
Cand(D) = L ceaAB(C) L L ¢1 compsia AB(C)

e A candidate Cand(D) isadiagnosisif and only if
SD E OBSE Cand(D)
IS satisfiable

« Handles single and multiple fault cases
* Doesnot require fault models

o /

Nayak CS 329A, Handout #13

-

Example: Adder-multiplier

2
A, |— 10
=g
A, |— 12
2

/

Nayak

CS 329A, Handout #13

4 ™
Conflicts

o A conflict isadigunction of AB(...) literals entailed by
D E OBS

— for conflict conf: SD E OBSE - conf isinconsistent

« Theorem: Let P bethe set of conflicts of asystem. A
candidate Cand(A) isadiagnosisif and only if
P E Cand(A)
IS satisfiable

o /

Nayak CS 329A, Handout #13

-

Examples of conflicts

I

=60

Helium tank

I

13

5

Fuel tank
- Pressure,= nominal

=
Oxidizer tank
Pressure; = nominal
Flow, = zero !
1 *
| [
¥ X Y
Main
Engines

KAcceI eration = zero

*

i Flow, = positive

/

Nayak

CS 329A, Handout #13

-

Example: Using conflicts

« Conflicts can be generated during consistency checking
« Can focus consistency checking

2

A, |— 10
2

A, |— 12
3o M

/

Nayak

CS 329A, Handout #13

a I
Fault models
I
|
W, W,
B,
Obs: B1 is off
W, W, B2 is off
82 B3ison
W; Wy
B,
\ /

Nayak

CS 329A, Handout #13

/

o

Component modes

« Diagnosis can become indiscriminate without fault models
« Each component has a set of modes with associated models
— normal modes
— fault modes

« Each component has the unknown fault mode with the empty
model

« Each mode has an associated probability

« Diagnosisisthe combinatorial optimization problem of
finding the most likely component modes

/

Nayak CS 329A, Handout #13

-

Combinatorial optimization problem

e A combinatorial optimization problem isatuple (V, f, ¢)

* Visaset of discrete variables with finite domains

« Anassignment mapseach v&V toavaueinv sdomain
o fisafunction that decides feasibility of assignments

— f(a) returns true if and only If assignment a isfeasible

e cisafunction that returnsthe cost of an assignment

— c(a) Isthe cost of assignment a

— assignment a, is preferred over assignment a, if ¢ (a,) < c(a,)
e Problem:

min c(V) st f(V)

/

Nayak CS 329A, Handout #13

-
Simple cost model

e Each variable has an associated cost of assigning it avaue
— ¢(vi= 1) isthe cost of assigning value |; to variable v,
o Cost of acomplete assignment is the sum of the costs of the
Individual variable assignments
— If assignment aisv,=1,,....v,=l,thenc(a) = S c(v=1)
e Costsof all variable values are non-negative
—-c(v=1)30
e Each variable has a minimum cost value with cost O
— generating aleast cost assignment is straightforward
— each variable is assigned a value with cost 0

o

/

Nayak CS 329A, Handout #13

/

Using the ssimple cost model

e Most probable diagnosis with independent component failures

p(vi=ly,...vi=1p) = plvi=1y) x ... x p(v,=1)
— let m be the most probable mode for component v

— c(v=1)) = = log(p(vi=1;) / p(v;i=m))

p all costs are non-negative with c(v=m) = 0
b for any assignments a, and a,, ¢(a,) £ c(a,) Iff p(a,) 2 p(a,)

~

/

Nayak

CS 329A, Handout #13

4 ™
Best first search

function BFSV, 1,)

Initialize Agenda to aleast cost assignment

Initialize Solutions to the empty set

while Agenda is non-empty do
Let A be one of the least cost assignments in Agenda
Remove A from Agenda
If f(A) istruethen Add A to Solutions
Add immediate successor assignments of A to Agenda
If enough solutionsthen return Solutions

endwhile

return Solutions

end BFS
\ %

Nayak CS 329A, Handout #13

4 N
Required subroutines for BFS

o Generating aleast cost assignment
» Generating the immediate successors of an assignment

— completeness. every feasible assignment must be the
(eventual) successor of the least cost assignment

— monotonicity: If b isan immediate successor of a, then
c(a) £ c(b)
* Deciding that enough solutions have been generated
— maximum number of solutions

— minimum difference between cost of best feasible solution
and the cost of the best assignment on the Agenda

— minimum difference between costs of the last two
_ assignments -
Nayptgenda management as apriority queue CS 329A, Handout #13

-

o

Representing assignments

« Each assignment is represented by the set of variable values
that differ from the least cost assignment

dom(vy) = {ay, b, ¢} c(y=a)=0
dom(V,) = { &, b, C;} c(vi=b) =1
dom(vs) = { &g, by, C3} c(vi=¢) = 2

e Least cost assgnment {v,=a,, V,=a,, V;= a3}
e Assignment {v,=a,, V,=a,, V;=bs} represented as just { vy= Db}

/

Nayak CS 329A, Handout #13

4 N
Basic successor function

e Assignment A, Is an immediate successor of assignment A, If
— the representation of A, Isa subset of the representation of A,;

— the representations of A, and A, differ by exactly one variable
value

— e.g., { v;=bgy} Isan immediate successor of {}

— e.g., {vs=Db;, v,=Db,} isan eventual successor, but not an
Immediate successor, of {}

o Definition of Immediate successorsis

— complete: all assignments are eventual successors of the least
cost assignment

— monotonic: if A, Is an immediate successor of A,, then

_ C(A)) £ c(A) J

Nayak CS 329A, Handout #13

4 N
Successor lattice

dom(v,) = {&ay, by, ¢} c(vi=&) =0
dom(v,) = {&, by, ¢} c(vi=b) =1
K dom(vs) = {as, b3, c3} C(vi=¢) = 2 /

Nayak CS 329A, Handout #13

-

Using conflicts

* Requirement: whenever f determines that an assignment is
Infeasible, it returns a conflict
— 1f assignment A isinfeasible, then A itself istrivially a
conflict
— 1deadlly, f should return aminimal infeasible subset of A asa
conflict

— conflicts can be generated using dependency tracking in a
truth maintenance system

/

Nayak CS 329A, Handout #13

/

~
Focusing with conflicts

 Lemma: Let A, be an (eventual) successor of A, suchthat A, Is
subsumed by a conflict N, but A, isnot. Then there exists an
Immediate successor A, of A, that is not subsumed by N such
that A, Isan (eventual) successor of A,.
Ao

As

A

P If an assignment A, isinfeasible and is subsumed by a conflict
N, then we need only generate those Immediate successors of
A, that are not subsumed by N

— the lemma ensures that completenessis preserved

_ — thesmaller the conflict, the fewer the immediate successors /

Nayak CS 329A, Handout #13

Initializing the agenda

Untouched

CS 329A, Handout #13

Nayak

Assignment {} Isinfeasible

-

- infeasible

CS 329A, Handout #13

a,) iIsaconflict

f({}) isfalse

1
\4

N

Nayak

-

b,} I1sinfeasible

Assignment { v,

f({ vy

a,) iIsaconflict

=by, V=

V

(

CS 329A, Handout #13

Nayak

L east cost feasible assignment found

b,}) istrue

=b,, V,

f({ vy

_

CS 329A, Handout #13

Nayak

4 ™
Decreasing agenda size

e Agendasize can be problematic in abest first search
— for abranching factor b, agenda grows to size O(bk) after k checks
— Inserting b elements into the agenda after k checks is O(b logb+ b logk)

* |Immediate successors of an assignment are totally ordered
— non-least cost successors only checked after least cost successor
P Insert only least cost successor onto agenda
Sort remaining successors
Each assignment has exactly two successors
— least cost immediate successor
— next more expensive sibling
« Size of the agendais bounded by the number of checks
K — Inserting b successors after k checksis O(b logb + 2logk) /

Nayak CS 329A, Handout #13

